用Serverlss部署一个基于深度学习的古诗词生成API

anycodes4个月前日常分享7640

第六篇:用Serverlss部署一个基于深度学习的古诗词生成API

前言

古诗词是中国文化殿堂的瑰宝,记得曾经在韩国做Exchange Student的时候,看到他们学习我们的古诗词,有中文的还有翻译版的,自己发自内心的骄傲,甚至也会在某些时候背起一些耳熟能详的诗词。

本文将会通过深度学习为我们生成一些古诗词,并将模型部署到Serverless架构上,实现基于Serverless的古诗词生成API。

项目构建

古诗词生成实际上是文本生成,或者说是生成式文本。关于基于深度学习的文本生成,最入门级的读物包括Andrej Karpathy的博客。他使用例子生动讲解了Char-RNN(Character based Recurrent Neural Network)如何用于从文本数据集里学习,然后自动生成像模像样的文本。

上图直观展示了Char-RNN的原理。以要让模型学习写出“hello”为例,Char-RNN的输入输出层都是以字符为单位。输入“h”,应该输出“e”;输入“e”,则应该输出后续的“l”。输入层我们可以用只有一个元素为1的向量来编码不同的字符,例如,h被编码为“1000”、“e”被编码为“0100”,而“l”被编码为“0010”。使用RNN的学习目标是,可以让生成的下一个字符尽量与训练样本里的目标输出一致。在图一的例子中,根据前两个字符产生的状态和第三个输入“l”预测出的下一个字符的向量为<0.1, 0.5, 1.9, -1.1>,最大的一维是第三维,对应的字符则为“0010”,正好是“l”。这就是一个正确的预测。但从第一个“h”得到的输出向量是第四维最大,对应的并不是“e”,这样就产生代价。学习的过程就是不断降低这个代价。学习到的模型,对任何输入字符可以很好地不断预测下一个字符,如此一来就能生成句子或段落。

本文项目构建参考了Github已有项目:https://github.com/norybaby/poet

通过Clone代码,并且安装相关依赖:

pip3 install tensorflow==1.14 word2vec numpy

通过训练:

python3 train.py

可以看到训练结果:

此时会生成多个模型在output_poem文件夹下,我们只需要保留最好的即可,例如我的训练之后生成的json文件:

{
  "best_model""output_poem/best_model/model-20390",
  "best_valid_ppl"21.441762924194336,
  "latest_model""output_poem/save_model/model-20390",
  "params": {
    "batch_size"16,
    "cell_type""lstm",
    "dropout"0.0,
    "embedding_size"128,
    "hidden_size"128,
    "input_dropout"0.0,
    "learning_rate"0.005,
    "max_grad_norm"5.0,
    "num_layers"2,
    "num_unrollings"64
  },
  "test_ppl"25.83984375
}

此时,我只需要保存output_poem/best_model/model-20390模型即可。

部署上线

在项目目录下,安装必要依赖:

pip3 install word2vec numpy -t ./

由于tensorflow等是腾讯云云函数内置的package,所以这里无需安装,另外numpy这个package需要在CentOS+Python3.6环境下打包。也可以通过之前制作的小工具打包:https://www.serverlesschina.com/35.html

完成之后,编写函数入口文件:

import uuid, json
from write_poem import WritePoem, start_model

writer = start_model()


def return_msg(error, msg):
    return_data = {
        "uuid": str(uuid.uuid1()),
        "error": error,
        "message": msg
    }
    print(return_data)
    return return_data


def main_handler(event, context):
    # 类型
    # 1: 自由
    # 2: 押韵
    # 3: 藏头押韵
    # 4: 藏字押韵

    style = json.loads(event["body"])["style"]
    content = json.loads(event["body"]).get("content"None)

    if style in '34' and not content:
        return return_msg(True"请输入content参数")

    if style == '1':
        return return_msg(False, writer.free_verse())
    elif style == '2':
        return return_msg(False, writer.rhyme_verse())
    elif style == '3':
        return return_msg(False, writer.cangtou(content))
    elif style == '4':
        return return_msg(False, writer.hide_words(content))
    else:
        return return_msg(True"请输入正确的style参数")

同时需要准备好Yaml文件:

getUserIp:
  component: "@serverless/tencent-scf"
  inputs:
    name: autoPoem
    codeUri: ./
    exclude:
      - .gitignore
      - .git/**
      - .serverless
      - .env
    handler: index.main_handler
    runtime: Python3.6
    region: ap-beijing
    description: 自动古诗词撰写
    namespace: serverless_tools
    memorySize: 512
    timeout: 10
    events:
      - apigw:
          name: serverless
          parameters:
            serviceId: service-8d3fi753
            protocols:
              - http
              - https
            environment: release
            endpoints:
              - path: /auto/poem
                description: 自动古诗词撰写
                method: POST
                enableCORS: true

此时,我们就可以通过Serverless Framework CLI部署项目。部署完成之后,我们可以通过PostMan测试我们的接口:

总结

本文通过已有的深度学习项目,在本地进行训练,保存模型,然后将项目部署在腾讯云云函数上,通过与API网关的联动,实现了一个基于深度学习的古诗词撰写的API。

工具体验



作者简介:刘宇,毕业于浙江大学,硕士学历,目前在腾讯工作,著有《Serverless 架构》一书,是Serverless架构的热衷者,曾做一款叫Anycodes的软件,目前下载超过100万次。

相关文章

基于Serverless快速实现简单版查询工具(文本相似度)

基于Serverless快速实现简单版查询工具(文本相似度)

需求背景朋友的单位,有一个小型的图书室,图书室中摆放了很多的书,每本书都被编号放在对应的区域,为了让大家更快,更容易找到这些书,他联系我,让我帮他弄一个图书查询系统。可以通过用户输入,模糊匹配到对应的...

Serverless与NLP实现文本摘要和关键词提取

Serverless与NLP实现文本摘要和关键词提取

前言对文本进行自动摘要的提取和关键词的提取,属于自然语言处理的范畴。提取摘要的一个好处是可以让阅读者通过最少的信息判断出这个文章对自己是否有意义或者价值,是否需要进行更加详细的阅读;提取关键词的好处是...

Serverless与人工智能实现微信公众号的智能服务

Serverless与人工智能实现微信公众号的智能服务

前言 传统意义上来说,想给微信公众号增加更多的功能,需要我们有一台服务器,搭建一个微信公众号的后台服务。那么在Serverless架构下,我们是否有超简便的方法来实现一个简单的微信公众号后台呢?...

3分钟实现文本敏感词过滤

3分钟实现文本敏感词过滤

前言敏感词过滤是随着互联网社区发展一起发展起来的一种阻止网络犯罪和网络暴力的技术手段,通过对可能存在犯罪或网络暴力可能的关键词进行有针对性的筛查和屏蔽,很多时候我们能够防患于未然,把后果严重的犯罪行为...

发表评论    

◎欢迎参与讨论,请在这里发表您的看法、交流您的观点。
嘿,一起Serverless